Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0291331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011105

RESUMO

B. parapertussis is one of the etiological agents of whooping cough. Once inhaled, the bacteria bind to the respiratory epithelium and start the infection. Little is known about this first step of host colonization and the role of the human airway epithelial barrier on B. parapertussis infection. We here investigated the outcome of the interaction of B. parapertussis with a polarized monolayer of respiratory epithelial cells. Our results show that B. parapertussis preferentially attaches to the intercellular boundaries, and causes the disruption of the tight junction integrity through the action of adenylate cyclase toxin (CyaA). We further found evidence indicating that this disruption enables the bacterial access to components of the basolateral membrane of epithelial cells to which B. parapertussis efficiently attaches and gains access to the intracellular location, where it can survive and eventually spread back into the extracellular environment. Altogether, these results suggest that the adenylate cyclase toxin enables B. parapertussis to overcome the epithelial barrier and eventually establish a niche of persistence within the respiratory epithelial cells.


Assuntos
Bordetella parapertussis , Coqueluche , Humanos , Bordetella parapertussis/metabolismo , Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/metabolismo , Espaço Intracelular/metabolismo , Coqueluche/microbiologia , Células Epiteliais/metabolismo
2.
Pathog Dis ; 80(1)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35927587

RESUMO

Gram-negative pathogenic bacteria constitutively shed outer membrane vesicles (OMVs) which play a significant role in the host-pathogen interaction, eventually determining the outcome of the infection. We previously found that Bordetella pertussis, the etiological agent of whooping cough, survives the innate interaction with human macrophages remaining alive inside these immune cells. Adenylate cyclase (CyaA), one of the main toxins of this pathogen, was found involved in the modulation of the macrophage defense response, eventually promoting bacterial survival within the cells. We here investigated whether B. pertussis OMVs, loaded with most of the bacterial toxins and CyaA among them, modulate the macrophage response to the bacterial infection. We observed that the pre-incubation of macrophages with OMVs led to a decreased macrophage defense response to the encounter with the bacteria, in a CyaA dependent way. Our results suggest that CyaA delivered by B. pertussis OMVs dampens macrophages protective function by decreasing phagocytosis and the bactericidal capability of these host cells. By increasing the chances of bacterial survival to the innate encounter with the macrophages, B. pertussis OMVs might play a relevant role in the course of infection, promoting bacterial persistence within the host and eventually, shaping the whole infection process.


Assuntos
Bordetella pertussis , Coqueluche , Toxina Adenilato Ciclase , Humanos , Macrófagos , Fatores de Virulência
3.
J Leukoc Biol ; 112(1): 173-184, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34811790

RESUMO

We previously demonstrated that Bordetella pertussis, the etiologic agent of whooping cough, is able to survive inside human macrophages. The aim of this study was to examine the influence of macrophage polarization in the development of B. pertussis intracellular infections. To this end, primary human monocytes were differentiated into M1, M2a, or M2c macrophages and further infected with B. pertussis. Infected M1 macrophages showed a proinflammatory response evidenced by the production of TNF-α, IL-12p70, and IL-6. Conversely, infection of M2a and M2c macrophages did not induce TNF-α, IL-12p70, nor IL-6 at any time postinfection but showed a significant increase of M2 markers, such as CD206, CD163, and CD209. Interestingly, anti-inflammatory cytokines, like IL-10 and TGF-ß, were induced after infection in the 3 macrophage phenotypes. B. pertussis phagocytosis by M1 macrophages was lower than by M2 phenotypes, which may be ascribed to differences in the expression level of B. pertussis docking molecules on the surface of the different phenotypes. Intracellular bactericidal activity was found to be significantly higher in M1 than in M2a or M2c cells, but live bacteria were still detected within the 3 phenotypes at the late time points after infection. In summary, this study shows that intracellular B. pertussis is able to survive regardless of the macrophage activation program, but its intracellular survival proved higher in M2 compared with the M1 macrophages, being M2c the best candidate to develop into a niche of persistence for B. pertussis.


Assuntos
Ativação de Macrófagos , Coqueluche , Bordetella pertussis , Humanos , Interleucina-6/metabolismo , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Coqueluche/metabolismo
4.
J Proteomics ; 211: 103559, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31669358

RESUMO

B. pertussis is the etiological agent of whooping cough, a highly contagious respiratory disease which remains uncontrolled worldwide. Understanding how this pathogen responds to the environmental changes and adapts to different niches found inside the host might contribute to gain insight into bacterial pathogenesis. Comparative analyses of previous transcriptomic and proteomic data suggested that post-transcriptional regulatory mechanisms modulate B. pertussis virulence in response to iron availability. Iron scarcity represents one of the major stresses faced by bacterial pathogens inside the host. In this study, we used gel-free nanoLC-MS/MS-based proteomics to investigate whether Hfq, a highly conserved post-transcriptional regulatory protein, is involved in B. pertussis adaptation to low iron environment. To this end, we compared the protein profiles of wild type B. pertussis and its isogenic hfq deletion mutant strain under iron-replete and iron-depleted conditions. Almost of 33% of the proteins identified under iron starvation was found to be Hfq-dependent. Among them, proteins involved in oxidative stress tolerance and virulence factors that play a key role in the early steps of host colonization and bacterial persistence inside the host cells. Altogether these results suggest that Hfq shapes the infective phenotype of B. pertussis. SIGNIFICANCE: In the last years, it became evident that post-transcriptional regulation of gene expression in ba cteria plays a central role in host-pathogen interactions. Hfq is a bacterial protein that regulates gene expression at post-transcriptional level found pivotal in the establishment of successful infections. In this study, we investigated the role of Hfq in Bordetella pertussis response to iron starvation, one of the main stresses imposed by the host. The data demonstrate that Hfq regulates the abundance of a significant number of B. pertussis proteins in response to iron starvation. Among them, virulence factors and proteins involved in oxidative stress tolerance, key players in host colonization and intracellular bacterial survival. Altogether, our results suggest a relevant role of Hfq in B. pertussis adaptation to the different niches found inside the host eventually granting bacterial pathogenesis.


Assuntos
Bordetella pertussis , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella pertussis/metabolismo , Regulação Bacteriana da Expressão Gênica , Espectrometria de Massas em Tandem , Virulência , Fatores de Virulência
5.
Microbiol Immunol ; 61(10): 407-415, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28857261

RESUMO

Whooping cough, which is caused by Bordetella pertussis and B. parapertussis, is a reemerging disease. New protective antigens are needed to improve the efficacy of current vaccines against both species. Using proteomic tools, it was here found that B. parapertussis expresses a homolog of AfuA, a previously reported new vaccine candidate against B. pertussis. It was found that this homolog, named AfuABpp , is expressed during B. parapertussis infection, exposed on the surface of the bacteria and recognized by specific antibodies induced by the recombinant AfuA cloned from B. pertussis (rAfuA). Importantly, the presence of the O-antigen, a molecule that has been found to shield surface antigens on B. parapertussis, showed no influence on antibody recognition of AfuABpp on the bacterial surface. The present study further showed that antibodies induced by immunization with the recombinant protein were able to opsonize B. parapertussis and promote bacterial uptake by neutrophils. Finally, it was shown that this antigen confers protection against B. parapertussis infection in a mouse model. Altogether, these results indicate that AfuA is a good vaccine candidate for acellular vaccines protective against both causative agents of whooping cough.


Assuntos
Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Infecções por Bordetella/prevenção & controle , Bordetella parapertussis/efeitos dos fármacos , Bordetella pertussis/genética , Vacina contra Coqueluche/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Infecções por Bordetella/imunologia , Bordetella parapertussis/imunologia , Bordetella parapertussis/patogenicidade , Bordetella pertussis/efeitos dos fármacos , Bordetella pertussis/imunologia , Bordetella pertussis/metabolismo , Modelos Animais de Doenças , Feminino , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Antígenos O/imunologia , Proteômica , Vacinação , Vacinas Acelulares/genética , Vacinas Acelulares/imunologia , Coqueluche/microbiologia
6.
Proteomics ; 15(13): 2258-66, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25755163

RESUMO

One of the mechanisms involved in host immunity is the limitation of iron accessibility to pathogens, which in turn provokes the corresponding physiological adaptation of pathogens. This study reports a gel-free nanoLC-MS/MS-based comparative proteome analysis of Bordetella pertussis grown under iron-excess and iron-depleted conditions. Out of the 926 proteins covered 98 displayed a shift in their abundance in response to low iron availability. Forty-seven of them were found to be increased in level while 58 were found with decreased protein levels under iron starvation. In addition to proteins previously reported to be influenced by iron in B. pertussis, we observed changes in metabolic proteins involved in fatty acid utilization and poly-hydroxybutyrate production. Additionally, many bacterial virulence factors regulated by the BvgAS two-component system were found at decreased levels in response to iron limitation. These results, together with the increased production of proteins potentially involved in oxidative stress resistance, seem to indicate that iron starvation provokes changes in B. pertussis phenotype that might shape host-pathogen interaction.


Assuntos
Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Proteoma/metabolismo , Western Blotting , Bordetella pertussis/genética , Espectrometria de Massas em Tandem , Virulência
7.
Vaccine ; 31(35): 3543-8, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23731630

RESUMO

Bordetella pertussis is the etiologic agent of whooping cough, an illness whose incidence has been increasing over the last decades. Pertussis reemergence despite high vaccination coverage, together with the recent isolation of circulating strains deficient in some of the vaccine antigens, highlight the need for new vaccines. Proteins induced under physiological conditions, such as those required for nutrient acquisition during infection, might represent good targets for better preventive strategies. By mean of serological proteome analysis we identified two novel antigens of B. pertussis potentially involved in iron acquisition during host colonization. We had previously demonstrated that one of them, designated IRP1-3, is protective against pertussis infection in mice. In the present study, we show that the other antigen, named AfuA (BP1605), is a highly antigenic protein, exposed on the bacterial surface, conserved among clinical isolates and expressed during infection. Immunization of mice with the recombinant AfuA induced opsonophagocytic antibodies which could explain the protection against B. pertussis infection conferred by mice immunization with rAfuA. Importantly, we found that the addition of rAfuA and rIRP1-3 proteins to the commercial three pertussis components acellular vaccine significantly increased its protective activity. Taken together, our results point at these two antigens as potential components of a new generation of acellular vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Bordetella pertussis/imunologia , Proteína 1 Reguladora do Ferro/imunologia , Vacina contra Coqueluche/imunologia , Coqueluche/imunologia , Animais , Anticorpos Antibacterianos/sangue , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos , Proteínas Opsonizantes/imunologia , Vacina contra Coqueluche/química , Vacinação , Coqueluche/microbiologia , Coqueluche/prevenção & controle
8.
Vaccine ; 29(47): 8731-9, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21884746

RESUMO

Antigenic proteins whose expression is induced under iron starvation, an environmental condition that bacterial pathogens have to face during colonization, might be potential candidates for improved vaccine. By mean of immune proteomics we identified novel antigens of Bordetella pertussis maximally expressed under iron limitation. Among them, Bp1152 (named as IRP1-3) showed a particularly strong reaction with human IgG purified from pooled sera of pertussis-infected individuals. Computer analysis showed IRP1-3 as a dimeric membrane protein potentially involved in iron uptake. Experimental data revealed the surface-exposure of this protein and showed its increase under iron starvation to be independent of bacterial virulence phase. Immunization of mice with the recombinant IRP1-3 resulted in a strong antibody response. These antibodies not only recognized the native protein on bacterial surface but also promote effective bacterial phagocytosis by human PMN, a key protecting activity against this pathogen. Accordingly, IRP1-3 proved protective against B. pertussis infection in mouse model. Expression of IRP1-3 was found conserved among clinical isolates of B. pertussis and positively regulated by iron starvation in these strains. Taken together these results suggest that this protein might be an interesting novel vaccine candidate.


Assuntos
Antígenos de Bactérias/imunologia , Bordetella pertussis/imunologia , Proteínas de Membrana/imunologia , Vacina contra Coqueluche/imunologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/administração & dosagem , Feminino , Proteínas de Membrana/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Vacina contra Coqueluche/administração & dosagem , Fagocitose , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia
9.
FEMS Immunol Med Microbiol ; 56(2): 143-50, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19385994

RESUMO

Bordetella pertussis is a re-emerging human respiratory pathogen whose infectious process is not fully understood, hampering the design of effective vaccines. The nature of bacterial attachment to host cells is a key event in the outcome of the infection. However, host cell receptors involved in B. pertussis colonization of the respiratory tract are still under investigation. Here, we report that cholesterol-rich domains are involved in B. pertussis adhesion to epithelial cells. Treatment of A549 cells with cholesterol-sequestering drugs such as methyl-beta-cyclodextrin, nystatin, or filipin resulted in a significant decrease of B. pertussis attachment. Confocal laser microscopy studies showed B. pertussis associated with cholesterol-rich domains. Accordingly, B. pertussis was found in detergent-resistant membrane domain fractions isolated from bacterial-infected A549 cells. Our results indicate a main role of filamentous hemagglutinin, an environmentally regulated virulence factor, in this interaction, and a specific affinity for cholesterol, one of the major components of tracheal secretions, which might additionally contribute to the effective colonization of the respiratory tract.


Assuntos
Aderência Bacteriana , Bordetella pertussis/fisiologia , Colesterol/metabolismo , Células Epiteliais/microbiologia , Adesinas Bacterianas/metabolismo , Antimetabólitos/farmacologia , Linhagem Celular , Filipina/farmacologia , Humanos , Nistatina/farmacologia , Fatores de Virulência de Bordetella/metabolismo , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA